
daemons Documentation
Release 1.2.1

Kevin Conway

November 11, 2014

Contents

1 Pre-Built Base Classes 3
1.1 RunDaemon . 3
1.2 StepDaemon . 3
1.3 Gevent/EventletDaemon . 3
1.4 Common Features . 4
1.5 Adding Custom Behaviour . 4
1.6 Wrapping Existing Code . 5

2 Indices and tables 7

i

ii

daemons Documentation, Release 1.2.1

Daemons is a resource library for Python developers that want to create daemon processes. The classes in this li-
brary provide the basic daemonization, signal handling, and pid management functionality while allowing for any
implementation of behaviour and logic.

Contents 1

daemons Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Pre-Built Base Classes

Inside of daemons is a sub-package called ‘prefab’ which contains some useful base classes for building new Python
daemons.

1.1 RunDaemon

from daemons.prefab import run

class MyDaemon(run.RunDaemon):

def run(self):

Code goes here.

The RunDaemon requires only that the ‘run’ method be implemented. This method must contain some form of a loop
to keep the process going. The process stops if the run method ever ends.

1.2 StepDaemon

from daemons.prefab import step

class MyDaemon(step.StepDaemon):

def step(self):

Code goes here.

If you simply have logic that you want run in an infinite loop use the StepDaemon over the RunDaemon. It automati-
cally handles running your method in a loop. Other than that, it is identical to the RunDaemon.

1.3 Gevent/EventletDaemon

from daemons.prefab import gevent

class MyDaemon(gevent.GeventDaemon):

def get_message(self):

3

daemons Documentation, Release 1.2.1

Grab a message from some source and return it.

def handle_message(self, message):

Do something with a message.

The gevent and eventlet daemons are specialized for working with message handling. Each one uses a green-thread
pool to run the handle_message method. The pool size and idle wait time for these daemons are configurable by
passing the ‘pool_size’ and ‘idle_time’ kwargs to the intializer.

1.4 Common Features

All deamons in the prefab sub-package share a common set of functionality. The following properties are available on
all instances of a daemon class.

• pidfile

Get the absolute path to the pidfile used by the daemon.

• pid

Get the pid if the processes is running else None.

• start()

Method to launch the daemon. This backgrounds the process and exits.

• stop()

Method to stop a running daemon. Will read from the pidfile and send an appropriate signal.

• restart()

Helper method which stops then starts the daemon.

• handle(signum, handler)

Add a function to be run when the process receives the signal identified by ‘signum’. The handler is passed no
arguments.

• send(signum)

Send a signal to the process.

1.5 Adding Custom Behaviour

The prefab daemons can be extended and specialized if their implementation is insufficient. Each major feature of
a daemon has been broken out into a separate mix-in which provides a standardized interface. The ‘interfaces’ sub-
package contains those standardized interfaces. So long as a class implements the given methods with the given
behaviours it can plug in with the other features.

For example implementations check the ‘simple’ module in the sub-package which matches the feature you want to
implement.

4 Chapter 1. Pre-Built Base Classes

daemons Documentation, Release 1.2.1

1.6 Wrapping Existing Code

If you have a function that you want to daemonize without writing a custom class then there is a potential option in
the ‘daemonizer’ module.

from daemons import daemonizer

@daemonizer.run(pidfile="/path/to/somewhere")
def some_func():

while True:

Do something.

some_func()

This will daemonize the function using a RunDaemon. A StepDaemon may also be used by decorating a function with
‘@daemonizer.step‘.

For convenience, a ‘stop()’ method is attached to the function to allow for stopping a running daemon.

some_func.stop()

Signal handlers can also be added using the decorator by passing in a kwarg called ‘signals’ which contains a dictionary
mapping signal numbers to iterables of functions to run.

import signal

@daemonizer.run(
pidfile="/path/to/somewhere",
signals={

signal.SIGTERM: [some_cleanup_function],
}

)
def some_func():

while True:

Do something

some_func()

1.6. Wrapping Existing Code 5

mailto:'@daemonizer.step

daemons Documentation, Release 1.2.1

6 Chapter 1. Pre-Built Base Classes

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

	Pre-Built Base Classes
	RunDaemon
	StepDaemon
	Gevent/EventletDaemon
	Common Features
	Adding Custom Behaviour
	Wrapping Existing Code

	Indices and tables

